Identification of Ras GTPase-activating proteinbinding sites in adaptor protein Nck- α

M. Ger, V. Tunaitis, M. Stoškus, M. Valius

Department of Developmental Biology, Institute of Biochemistry, Vilnius, Lithuania E-mail: marija.ger@bchi.lt Adaptor proteins consisting of Src homology (SH) 2 and 3 domains mediate various cellular signaling events initiated by receptor protein tyrosine kinases. Nck- α is one of the adaptor proteins implicated in the coordination of multiple intracellular signal transduction pathways emanating from the ligand-activated PDGF receptor-b. In our previous studies we have shown that Nck- α constantly associates with RasGTPase-activating protein (RasGAP). Here we show that SH3 domains of Nck- α are responsible for constitutive association with RasGAP. Moreover, Nck- α and RasGAP interact directly *in vitro*. These data provide a new insight into the molecular mechanism of RasGAP and Nck- α interaction.

Key words: PDGF receptor, Nck, RasGAP

INTRODUCTION

Nck- α belongs to a family of Src homology (SH) 2/ SH3 domains-containing adaptor proteins, a group of proteins consisting of SH2 and SH3 domains and lacking any intrinsic enzymatic activity. SH2 domains associate with specific phosphotyrosine-containing sites. SH3 domains bind proline-rich motives, and generally these interactions are phosphorylation-independent [1, 2]. Nck- α has three consecutive SH3 and one SH2 domains. Adaptor proteins through their SH3 domains can associate with a number of signaling proteins and upon cell stimulation with a growth factor recruit them to tyrosine-phosphorylated cytoplasmic or membrane-attached proteins [3]. Nck- α is involved in the signaling pathways controlling actin cytoskeleton dynamics, DNA synthesis initiation, gene expression and protein translation [4-6].

RasGTPase-activating protein (RasGAP) is known mainly to regulate the steady-state level of activated ras. It is also involved in the regulation of actin cytoskeleton, however, the exact molecular mechanism remains to be determined [7].

In this study, we have elucidated mechanism by which Nck- α adaptor protein forms molecular complex with RasGAP.

MATERIALS AND METHODS

Cell culture and preparation of cell lysates. HepG2 cells were maintained in Dulbecco's modified Eagle's medium (DMEM) supplemented with 100 U/ml penicillin, 100 μ g/ml streptomycin and 10% foetal bovine serum (GibcoBRL, UK). HepG2 cell line, devoid of endogenous PDGFR- β , was used for a stable expression of PDGFR- β (H-PR) using the retrovirus expression vector as described previously [8].

HepG2 cells were grown to a 70–80% confluence and made quiescent by culturing in serum-free DMEM overnight. Cells were stimulated or unstimulated with 30 ng/ml PDGF-BB (Amgene, USA) for 10 min at 37 °C, washed with ice-cold PBS and lysed in EB⁺⁺ buffer (10 mM Tris-HCl, pH 7.4, 50 mM NaCl, 5 mM EDTA, 50 mM NaF, 1% Triton X-100, 1 mM PMSF, 2 mM NaVO₄). The lysates were cleared by centrifugation at 20.000 × g for 15 min (0 °C).

Construction of SH2 domain-lacking Nck- α and generation of GST fusion proteins. A DNA fragment encoding three consecutive SH3 domains of Nck- α but lacking SH2 domain (called 3SH3, aminoacids 5-251) was generated by PCR and subcloned into the pGex2T bacterial expression vector (Amersham

Figure. The mechanism of interaction between Nck- α and RasGAP. A. Quiescent cultures of H⁴-WT cells were left resting (–) or stimulated for 10 min with 30 ng/ml of PDGF-BB (+), lysed and used for pull-down assay with GST (lanes 2 and 3), GST-Nck- α (lanes 4 and 5) or GST-3SH3 (lanes 6 and 7) recombinant proteins. Precipitates were subjected to PDGFR (top portion of panel A) or RasGAP (bottom portion of panel A) Western blot analysis. Nck – GST-Nck- α , 3SH3 – GST-3SH3

B. Quiescent cultures of H⁴-WT cells were left resting (-) or stumulated for 10 min with 30 ng/ml of PDGF-BB (+), lysed and immunoprecipitated with a RasGAP antibody. Immunoprecipitates were subjected to Far Western blot analysis with GST (lanes 2 and 3) or GST-Nck- α (lanes 4 and 5). Simultaneously a RasGAP Western blot analysis was performed against H⁴-WT cell lysate to determine the exact position of RasGAP (lane 1)

Biosciences, USA). GST proteins were generated and purified as described earlier [9].

Far Western blot and pull-down assay. Lysates from PDGF-treated or untreated H-PR cells were immunoprecipitated with RasGAP antibodies for 2 h (0 °C). Immunoprecipitates were collected with Protein-A Sepharose (Amersham Biosciensces, USA) for 1 h at 4 °C. Then sepharose beads were washed with EB⁺ buffer and prepared for SDS-PAG electrophoresis. Supernatants were sepatated by SDS-PAGE electrophoresis, transferred to PVDF membrane and blotted for 3 h with 10 μ g/ml of GST or GST-Nck- α protein in Far Western buffer (22 mM HEPES pH7.7, 75 mM KCl, 0.1 mM EDTA, 2.5 mM MgCl, 1% BSA, 0.05% NP-40, 1 mM DTT). The membrane was incubated with GST antibody and probed with alkaline phosphatase-conjugated secondary antibody (Sigma, USA). Blots were developed in a solution NBT/BCIP (Roth, Germany). Pull-down experiments were performed as described earlier [9].

RESULTS AND DISCUSSION

SH3 domains of Nck-α are responsible for constant association with RasGAP. We have previously reported that Nck-a constantly associates with RasGAP [9]. Constant interactions of adaptor proteins usually are mediated by SH3 domains [4]. To test this possibility, we have constructed an Nck-α mutant GST fusion protein lacking SH2 domain (GST-3SH3) and used it along with GST-Nck- α protein in a pull-down assay from PDGFstimulated or unstimulated H-PR cells. Data show that both GST-Nck- α (Fig. 1A, lanes 4 and 5) and GST-3SH3 (Fig. 1A, lanes 6 and 7) associate with RasGAP in either PDGF-treated or untreated cells. GST-Nck- α fussion protein associates with PDGF receptor only in PDGFtreated cells; GST-Nck3SH3 does not associate with PDGF receptor- β , because this interaction requires SH2 domain [10]. GST alone binds neither PDGF receptor nor RasGAP (Fig. 1A, lanes 2 and 3).

Nck-α associates with RasGAP directly. To determine

whether Nck- α and RasGAP interact directly, we have immunoprecipitated RasGAP from PDGFtreated and untreated H-PR cells and performed a Far Western assay with GST-Nck- α or GST. Data show that GST alone does not interact with RasGAP (Fig 1B, lanes 2 and 3), however, GST-Nck- α associates with RasGAP directly in PDGFindependent maner (Fig. 1B, lanes 4 and 5). The only interaction between Nck- α and RasGAP reported earlier was indirect and occurred only in growth factor-stimulated cells [11].

Taken together, the data show that Nck- α and RasGAP proteins interact directly. This interaction is mediated by Nck- α SH3 domains and does not depend on cell stimulation with PDGF. Further studies will be needed to map the exact sites responsible for the complex formation between Nck- α and RasGAP and to determine the intracellular role of such interaction.

ACKNOWLEDGEMENTS

We would like to thank V. Gurskiene for excellent technical assistance. This work was supported by the Lithuanian Science and Studies Foundation (Grants K-040 and G-046).

Received 27 January 2004 Accepted 18 September 2004

References

- 1. Chen M, She H, Davis EM et al. J Biol Chem 1998; 273(39): 25171-8.
- Chen M, She H, Kim A et al. Mol Cell Biol 2000; 20(21): 7867–80.
- Buday L, Wunderlich L, Tamas P. Cellular Signalling 2002; 14(9); 723–31.
- 4. Buday L. Biochimica et Biophysica Acta 1999; 1422; 187–204.
- 5. Li W, Fan J et al. Oncogene 2001; 20, 6403-17.
- 6. McCartey JH. Bioessays 1996; 20.11; 20913-21.
- Leblanc V, Toscue B, Delumeau I. Mol Cell Biol 1998; 18(9); 5567–78.

- Lint JV, Ni Y, Valius M et al. J Biol Chem 1998; 273(12): 7038–43.
- 9. Ger M, Tunaitis V, Valius M. Biologija 2003; 3; 7-9.
- Nishimura R, Kashishian A, Mondino A et al. Mol Cell Biol 1993; 13(11); 6889–96.
- 11. Holland SJ, Gale NW, Gish GD et al. EMBO J 1997; 16(13): 3877-88.

M. Ger, V. Tunaitis, M. Stoškus, M. Valius

SU RAS GTPAZÆ AKTYVUOJANÈIU BALTYMU SÀVEIKAUJANÈIØ DOMENØ NUSTATYMAS ADAPTORINIAME BALTYME NCK-α

Santrauka

Ið Src homologijos (SH) 2 ir 3 domenø sudaryti adaptoriniai baltymai perduoda ávairius signalus ið receptoriniø tirozino proteinkinaziø. Nck-α yra vienas iš adaptoriniø baltymø, dalyvaujantis daugybës nuo PDGF receptoriaus-b priklausomø vidulàsteliniø signalø reguliavime. Anksèiau iðsiaiðkinome, kad Nck-α nuolat sàveikauja su Ras GTPazæ aktyvuojanèiu baltymu (RasGAP). Điame darbe nustatëme, kad nuolatinæ Nck-α ir RasGAP sàveikà nulemia Nck-α SH3 domenai. Be to, *in vitro* Nck-α ir RasGAP sàveikauja tiesiogiai. Gauti duomenys leidþia geriau suprasti Nck-α ir RasGAP sàveikos molekuliná mechanizmà.